Exploitation of the Maximum Entropy Principle in Mathematical Modeling of Charge Transport in Semiconductors

نویسندگان

  • Giovanni Mascali
  • Vittorio Romano
چکیده

Abstract: In the last two decades, the Maximum Entropy Principle (MEP) has been successfully employed to construct macroscopic models able to describe the charge and heat transport in semiconductor devices. These models are obtained, starting from the Boltzmann transport equations, for the charge and the phonon distribution functions, by taking—as macroscopic variables—suitable moments of the distributions and exploiting MEP in order to close the evolution equations for the chosen moments. Important results have also been obtained for the description of charge transport in devices made both of elemental and compound semiconductors, in cases where charge confinement is present and the carrier flow is twoor one-dimensional.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Discontinuities for the 2-d Mep Hydrodynamical Model of Charge Transport in Semiconductors

For the balance equations of charge transport in semiconductors based on the maximum entropy principle (see Anile and Romano (1999) and Romano (2000)), we derive and study the Rankine-Hugoniot jump conditions.

متن کامل

Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration

In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...

متن کامل

Nonlinear Models for Silicon Semiconductors

In this paper we present exact closures of the 8-moment and the 9-moment models for the charge transport in silicon semiconductors based on the maximum entropy principle. The validity of these models is assessed by numerical simulations of an n-+n-n+ device. The results are compared with those obtained from the numerical solution of the Boltzmann Transport Equation both by Monte Carlo method an...

متن کامل

A hydrodynamical model for holes in silicon semiconductors: The case of non-parabolic warped bands

In this paper we present a hydrodynamical model which describes hole motion in silicon. The model is based on the moment method and the closure of the system of moment equations is obtained by using the maximum entropy principle (hereafter MEP). The heavy, light and split-off valence bands are considered. The first two are described by taking into account their warped shape, while for the split...

متن کامل

Extended Hydrodynamical Model of Carrier Transport in Semiconductors

A hydrodynamical model based on the theory of extended thermodynamics is presented for carrier transport in semiconductors. Closure relations for fluxes are obtained by employing the maximum entropy principle. The production terms are modeled by fitting the Monte Carlo data for homogeneously doped semiconductors. The mathematical properties of the model are studied. A suitable numerical method,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017